Metric Precision Ball Screws
High load capacity in a range of package sizes, providing precise, smooth and quiet performance
Metric Precision Ball Screw Overview (10 - 12 mm)

The ideal solution for laboratory, medical and mechatronic applications, Thomson’s FSI, TSI and RSI Styles of metric rolled ball screws deliver smooth and quiet operation and best-in-class load capacity.

Bigger Load Capacity
- Design maximizes load capacity by optimizing return system
- Quiet and smooth performance
- Enables flexible ball nut mounting configurations and rapid prototyping

Improved Value
- Screws are precision rolled to T7 accuracy class standard
- State-of-the-art manufacturing
- Higher load capacity equates to longer life

Genuine Thomson Quality and Innovation
- Proprietary thread form and processing equal quality and performance
- Expert technical and application support

Ball Nut Types

<table>
<thead>
<tr>
<th>Styles</th>
<th>Nominal Diameter Size Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanged Single Nut Internal Return System (FSI)</td>
<td>10 - 50</td>
</tr>
<tr>
<td>Threaded Single Nut Internal Return System (TSI)</td>
<td>10 - 12</td>
</tr>
<tr>
<td>Rounded Single Nut Internal Return System (RSI)</td>
<td>10 - 12</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
<th>Strength</th>
<th>Heat treatment</th>
<th>Standard Surface Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R_m [N/mm²]</td>
<td>R_s [N/mm²]</td>
<td></td>
</tr>
<tr>
<td>Screw</td>
<td>CF53</td>
<td>≥ 610</td>
<td>≥ 380</td>
<td>60 ± 2 HRC Inductive hardening</td>
</tr>
<tr>
<td></td>
<td>SAE1045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nut</td>
<td>16MnCr5</td>
<td>> 800</td>
<td>> 600</td>
<td>60 ± 2 HRC hardened</td>
</tr>
<tr>
<td></td>
<td>SAE8620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiper</td>
<td>NBR 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball</td>
<td>100Cr6</td>
<td></td>
<td></td>
<td>64 ± 2 HRC</td>
</tr>
<tr>
<td></td>
<td>SAE52100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special materials and heat or surface treatment on request.
Permitted temperature in continuous operation -22°F (-30°C) to 212°F (100°C). Please inquire for other applications.
Nuts with plastic ball returns only to 176°F (80°C); briefly 230°F (110°C).
Miniature FSI, TSI & RSI Styles Ball Screws – Product Availability

<table>
<thead>
<tr>
<th>Nominal Diameter [mm]</th>
<th>2 mm</th>
<th>3 mm</th>
<th>5 mm</th>
<th>10 mm</th>
<th>20 mm</th>
<th>25 mm</th>
<th>40 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard FSI Style Ball Screws - Product Availability

<table>
<thead>
<tr>
<th>Nominal Diameter [mm]</th>
<th>2 mm</th>
<th>3 mm</th>
<th>5 mm</th>
<th>10 mm</th>
<th>20 mm</th>
<th>25 mm</th>
<th>40 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>20</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>25</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>32</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>40</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>50</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Standard FSI Style (16 - 50 mm)

FSI Style metric ball screws combine the engineering and performance of high-quality, German ball screws with North American manufacturing and logistics. Only 2% of all ball screws sold in North America are manufactured here, so you’ll be able to take advantage of shorter lead times, reduced shipping costs, and enhanced communication with support and service. The FSI Style provides the best in quality, performance and delivery at a competitive price.

- DIN 69051 compliant (FSI Style 16 - 50 mm only)
- Patented Precision Screw Forming (PST) technology
- Smooth performance due to unique ball return systems

- Regionally stocked/machined/assembled product
 - Tijuana, Mexico to support West Coast
 - Marengo, Illinois to support East Coast
- P5 accuracy screws standard
- Ground quality ball nuts
FSI Style Application Examples

Thomson’s FSI ball screw assemblies provide the smooth motion and positional accuracy typically found only in a ground product. These qualities, combined with the economical precision rolled solution, make them ideal for large 3-axis structures.

Gantry
Thomson’s unique ball return systems and preload capabilities reduce the effect of critical screw speed on a long slender axis (see X-axis above). Combined with the Thomson profile rail, this solution provides stiffness and accuracy to the overall system.

Smooth motion is necessary to prevent reflected inertia from causing structural vibration in large structures. The illustrated Y-axis below combines a precision FSI ball screw assembly with the alignment compensation of Thomson linear rails.

Engraver / Laser / Waterjet Cutting
Machine tool applications have primarily been the domain of ground ball screw assemblies. The introduction of high-precision P3/P5 accuracy rolled ball screws has eliminated the need for ground product where a less expensive solution that still meets high performance standards is required.

These types of applications typically require P3/P5 accuracy, 75-100% duty cycle, harsh environments, and reversing loads or dithering issues. FSI ball screw assemblies have molded rubber (NBR) seals as standard in sizes Ø16 mm and above and are ideal for these demanding parameters.
Metric Ball Nut Return System Overview

All ball screws require a recirculation system for the ball bearings. Thomson return systems are optimized for each diameter and lead combination to maximize load capacity, minimize footprint and guarantee smooth operation.

Single Return (E = Single Liner, M = Multi Liner)

For single-start ball screws

After each turn, the balls are lifted from the shaft raceway and set back by a single turn. Thomson NEFF return systems made from glass-fiber reinforced plastic or steel guarantee a faultless and gentle recirculation of the balls.

Internal Return (K = Channel)

For single-start and multiple-start ball screws.

After several turns, the balls are returned either by a patented plastic recirculation system integrated into the nut or through recirculation channels also integrated into the nut using steel recirculation inserts.

External Return (D = End Cap)

For multiple-start ball screws.

The balls are recirculated via two special end caps and return channels integrated into the nut.
Bearing Supports Product Overview

Metric Ball Screws

<table>
<thead>
<tr>
<th>Diameter</th>
<th>BK</th>
<th>BF</th>
<th>FK</th>
<th>FF</th>
<th>MK</th>
<th>WK</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>783391</td>
<td>783398</td>
<td>783405</td>
<td>783411</td>
<td>7833700</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>783392</td>
<td>783399</td>
<td>783406</td>
<td>783412</td>
<td>7833701</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>783393</td>
<td>783400</td>
<td>783407</td>
<td>783413</td>
<td>7833702</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>783394</td>
<td>783401</td>
<td>783408</td>
<td>783414</td>
<td>7833703</td>
<td>7833614</td>
</tr>
<tr>
<td>32</td>
<td>783395</td>
<td>783402</td>
<td>783409</td>
<td>783415</td>
<td>-</td>
<td>7833615</td>
</tr>
<tr>
<td>40</td>
<td>783396</td>
<td>783403</td>
<td>783410</td>
<td>783416</td>
<td>-</td>
<td>7833617</td>
</tr>
<tr>
<td>50</td>
<td>783397</td>
<td>783404</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7833621</td>
</tr>
</tbody>
</table>

The base mounted BK Bearing Support contains an angular contact bearing pair for increased stiffness and axial load capacity. Design dimensions fit standard Type BK or BK1 end machining.

The flange-mounted FK Bearing Support contains an angular contact bearing pair for increased stiffness and axial load capacity. Design dimensions fit standard Type FK or FK1 end machining.
BF Bearing Support\(^{(1), (3)}\)

Base-mounted BF Bearing Support contains a floating radial bearing to allow axial shaft movement. Design dimensions fit standard Type BF or BF1 end machining.

FF Bearing Support\(^{(1), (3)}\)

The flange-mounted FF Bearing Support contains a floating radial bearing to allow axial shaft movement. Design dimensions fit standard Type FF or FF1 end machining.

MK Bearing Support\(^{(2)}\)

Base-mounted NEMA 23 or 34 motor mount. Design dimensions fit standard Type FK end machining.

WK Bearing Support\(^{(2)}\)

Heavy duty, flange-mounted WK support contains higher load capacity bearings. Design dimensions fit standard WK or WK1 end machining.

\(^{(1)}\) BK, FK, MK and WK supports are classified as “fixed,” and BF and FF supports are classified as “simple” for purposes of critical speed and column strength calculations.

\(^{(2)}\) Locknut included in assembly

\(^{(3)}\) Retaining ring included in assembly
FSI Style Ball Nuts – Technical Specifications

Internal Return Flanged Ball Nut and Screw
- Flexible solution for standard mounting
- Integral wiper (≥ 16 mm) and flange included as standard
- Available in three preload classes (Type Z1, Z2, Z3)
 - Z1 – light preload to 1-2% (16 - 50 mm only)
 - Z2 – no preload, clearance held to max indicated in table (standard unless specified)
 - Z3 – no preload, clearance held to max 0.05 mm (16 - 50 mm only)

Technical Specifications

<table>
<thead>
<tr>
<th>Nom. Diameter [mm]</th>
<th>Lead [mm]</th>
<th>Nut Form</th>
<th>Return System</th>
<th>Ball Nut P/N</th>
<th>Ball Screw P/N</th>
<th>Performance Data</th>
<th>Screw Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>M M</td>
<td></td>
<td>8103-448-039</td>
<td>190-9680</td>
<td>2.0</td>
<td>440</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>M M</td>
<td></td>
<td>8103-448-040</td>
<td>190-9681</td>
<td>4.8</td>
<td>1076</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>M K</td>
<td></td>
<td>8103-448-042</td>
<td>190-9689</td>
<td>2.9</td>
<td>669</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>M M</td>
<td></td>
<td>8105-448-043</td>
<td>190-9690</td>
<td>6.8</td>
<td>1550</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>E E</td>
<td></td>
<td>7106-448-061</td>
<td>195-9698</td>
<td>9.3</td>
<td>2091</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>E K</td>
<td></td>
<td>7106-448-062</td>
<td>195-9699</td>
<td>15.4</td>
<td>3462</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>E K</td>
<td></td>
<td>7107-448-063</td>
<td>195-9700</td>
<td>10.5</td>
<td>2361</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>E E</td>
<td></td>
<td>7110-448-064</td>
<td>195-9701</td>
<td>12.3</td>
<td>2765</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>E K</td>
<td></td>
<td>7110-448-065</td>
<td>195-9702</td>
<td>13.2</td>
<td>2968</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>S D</td>
<td></td>
<td>7110-448-066</td>
<td>195-9703</td>
<td>13.0</td>
<td>2923</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>S D</td>
<td></td>
<td>7110-448-067</td>
<td>195-9704</td>
<td>16.7</td>
<td>3754</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>E E</td>
<td></td>
<td>7112-448-069</td>
<td>195-9706</td>
<td>21.5</td>
<td>4834</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>E E</td>
<td></td>
<td>7112-448-070</td>
<td>195-9707</td>
<td>33.4</td>
<td>7509</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>E K</td>
<td></td>
<td>7112-448-071</td>
<td>195-9708</td>
<td>29.7</td>
<td>6677</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>E E</td>
<td></td>
<td>7115-448-073</td>
<td>195-9707</td>
<td>23.8</td>
<td>5351</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>E E</td>
<td></td>
<td>7115-448-074</td>
<td>195-9711</td>
<td>38.0</td>
<td>8543</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>E K</td>
<td></td>
<td>7115-448-075</td>
<td>195-9712</td>
<td>33.3</td>
<td>7487</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>S D</td>
<td></td>
<td>7115-448-076</td>
<td>195-9713</td>
<td>35.0</td>
<td>7899</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>E E</td>
<td></td>
<td>7120-448-077</td>
<td>195-9714</td>
<td>68.7</td>
<td>15445</td>
</tr>
</tbody>
</table>

(1) P3 accuracy class is ± 12 µm / 300 mm for nut sizes 16 mm and greater and is available upon request.

Standard Lead Accuracy
- 10-12 mm: ± 52 µm / 300 mm
- ≥ 16 mm: ± 23 µm / 300 mm

Note: Some sizes only available with round flange; check L8 dimension for flange style.
FSI Style Ball Nuts – Technical Specifications

Technical Specifications

<table>
<thead>
<tr>
<th>Nom. Diameter [mm]</th>
<th>Lead [mm]</th>
<th>Hole Pattern</th>
<th>Nut Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D1, D2, D3</td>
<td>D4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[mm]</td>
<td>[mm]</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>18, 28</td>
<td>4.5, 36</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>18, 28</td>
<td>4.5, 36</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>23, 30.5</td>
<td>4.5, 38</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>20, 29</td>
<td>4.5, 37</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>28, 38</td>
<td>6, 48, 10</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>36, 47</td>
<td>7, 58, 10</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>40, 51</td>
<td>7, 62</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>40, 51</td>
<td>7, 62</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>40, 51</td>
<td>7, 62</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>40, 51</td>
<td>7, 62</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>50, 65</td>
<td>9, 80, 10</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>53(3)</td>
<td>65, 9</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>53(3)</td>
<td>65, 9</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>63, 78</td>
<td>9, 93, 16</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>63, 78</td>
<td>9, 93, 16</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>63, 78</td>
<td>9, 93, 16</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>63, 78</td>
<td>9, 93, 16</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>75, 93</td>
<td>11, 110, 16</td>
</tr>
</tbody>
</table>

(2) For > 16 mm nominal diameter.
(3) Dimension does not comply with DIN 69051.
(4) Round flange.
TSI Style Ball Nuts – Technical Specifications

Technical Specifications

<table>
<thead>
<tr>
<th>Nom. Diameter</th>
<th>Lead</th>
<th>Return System</th>
<th>Ball Nut P/N</th>
<th>Ball Screw P/N</th>
<th>Dynamic Load Capacity</th>
<th>Static Load Capacity</th>
<th>Max. Axial Backlash</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td>[kN]</td>
<td>[kN]</td>
<td>[mm]</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>M</td>
<td>8103-448-022</td>
<td>190-9680</td>
<td>2.0</td>
<td>3.4</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>M</td>
<td>8103-448-023</td>
<td>190-9681</td>
<td>4.8</td>
<td>8.6</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>K</td>
<td>8103-448-030</td>
<td>190-9689</td>
<td>2.9</td>
<td>5.2</td>
<td>0.05</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>M</td>
<td>8105-448-031</td>
<td>190-9690</td>
<td>6.8</td>
<td>13.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Internal Return Threaded Ball Nut and Screw

- Cost-effective solution in a small envelope, ideal for use in small spaces
- Flexible solution for non-standard mounting
- Available in standard preload classes (Type Z2)
 - Z2 – no preload, clearance held to max indicated in table

Standard Lead Accuracy: ± 52 µm / 300 mm
TSI Style Ball Nuts – Technical Specifications

<table>
<thead>
<tr>
<th>Nom. Diameter</th>
<th>Lead</th>
<th>Screw Specifications</th>
<th>Nut Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Major Diameter</td>
<td>Minor Diameter</td>
</tr>
<tr>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>9.8</td>
<td>8.3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>9.7</td>
<td>8.0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9.7</td>
<td>7.9</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>11.8</td>
<td>10.3</td>
</tr>
</tbody>
</table>
RSI Style Ball Nuts – Technical Specifications

Internal Return Threaded Ball Nut and Screw
- Cost-effective solution in a small envelope, ideal for use in small spaces
- Flexible solution for non-standard mounting
- Available in standard preload classes (Type Z2)
 - Z2 – no preload, clearance held to max indicated in table

Standard Lead Accuracy: $\pm \, 52 \, \mu m / 300 \, mm$

Technical Specifications

<table>
<thead>
<tr>
<th>Nom. Diameter [mm]</th>
<th>Lead [mm]</th>
<th>Return System</th>
<th>Ball Nut P/N</th>
<th>Ball Screw P/N</th>
<th>Performance Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dynamic Load Capacity [kN]</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>M</td>
<td>8103-448-052</td>
<td>190-9680</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>M</td>
<td>8103-448-053</td>
<td>190-9681</td>
<td>4.8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>K</td>
<td>8103-448-055</td>
<td>190-9689</td>
<td>2.9</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>M</td>
<td>8105-448-056</td>
<td>190-9690</td>
<td>6.8</td>
</tr>
</tbody>
</table>
RSI Style Ball Nuts – Technical Specifications

<table>
<thead>
<tr>
<th>Nom. Diameter</th>
<th>Lead</th>
<th>Screw Specifications</th>
<th>Nut Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Major Diameter</td>
<td>Minor Diameter</td>
</tr>
<tr>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>9.8</td>
<td>8.3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>9.7</td>
<td>8.0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9.7</td>
<td>7.9</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>11.8</td>
<td>10.3</td>
</tr>
</tbody>
</table>
How to Order Metric Precision Rolled Ball Screws

This ordering key provides a quick overview of the FSI, TSI and RSI Style versions available. To explore additional technical resources and options, contact Thomson customer support.

Ordering Key

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>25</td>
<td>10</td>
<td>Z2</td>
<td>–</td>
<td>xxxx</td>
<td>–</td>
<td>F</td>
<td>L</td>
<td>W</td>
<td>–</td>
<td>BK</td>
<td>S</td>
</tr>
</tbody>
</table>

1. Nut Configuration
 RM = RH, Metric

2. Diameter
 10 = Ø 10 mm
 12 = Ø 12 mm
 16 = Ø 16 mm
 20 = Ø 20 mm
 25 = Ø 25 mm
 32 = Ø 32 mm
 40 = Ø 40 mm
 50 = Ø 50 mm

3. Lead Code
 02 = 2 mm
 03 = 3 mm
 05 = 5 mm
 10 = 10 mm
 20 = 20 mm
 25 = 25 mm
 40 = 40 mm

4. Backlash
 Z1 = Light Preload (16-50 mm)
 Z2 = Standard backlash (see Technical Specifications)
 Z3 = Minimum backlash (16-50 mm)

5. Threaded Length
 xxxx.xx = Length (mm)

6. Nut Interface
 F = Flanged nut (FSI) style
 T = Thruhead nut (TSI) style
 R = Round nut (RSI) style with keyway (10-12 mm)

7. Nut Direction
 R = Nut faces right end
 L = Nut faces left end

8. Wipers
 X = No wipers (10-12 mm)
 W = Plastic wipers (16-50 mm)

9/11. Left/Right Side Configuration
 X = Cut to length
 k = Machine to print
 yyy = Annealed Length (mm)
 BK = Base mount w/Drive
 BK1 = Base mount w/o Drive
 BF = Floating base mount w/Drive
 BF1 = Floating base mount w/o Drive
 FK = Flange mount w/Drive
 FK1 = Flange mount w/o Drive
 FF = Floating flange mount w/Drive
 FF1 = Floating flange mount w/o Drive
 WK = HD Flange w/ Drive
 WK1 = HD Flange w/o Drive
 MK = Motor mount

10/12. Left/Right Bearing Support
 Blank = Annealed end
 X = No Support
 S = Support BK, etc.

13. Custom Modifier
 Blank = Standard
 M = Custom

Code Example: RM2510Z2-271.5-FLW-BKS-KX
This describes a standard lashed Ø25 x 10 mm FSI ball screw assembly that is 271.5 mm in threaded length with a BK driven bearing support on the left side and custom specified machining on the right side without bearing support. The flange faces the left side with the BK bearing support.

NOTE: Not all bearing supports are available in all sizes. See catalog or contact customer support for available combinations.

Express Prototypes, Less Lead Time

Prices and lead times are generally higher with other products as 98% of rolled metric ball screws are manufactured outside of North America.

Thomson provides expert application support and the ability to rapidly prototype designs by combining North American manufacturing of metric products with the engineering support of a trusted brand.

Don’t pay extra to wait.
Order your Thomson prototype with delivery from our North American facility in Marengo:

<table>
<thead>
<tr>
<th>Components</th>
<th>Standard Lead Time</th>
<th>Express Lead Time (Qualified Prototypes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components</td>
<td>1 - 3 days</td>
<td>Same day</td>
</tr>
<tr>
<td>Machined Assemblies</td>
<td>2 - 4 weeks</td>
<td>1 - 2 weeks</td>
</tr>
</tbody>
</table>
Customized Products and Machining to Fit Your Applications

FSI Standard (16 - 50 mm) Metric Ball Screws
- Custom coatings available (thin dense chrome)
- ± 12 µm/300 mm lead accuracy (P3)
- Reduced backlash (0.05 mm)
- All Thomson Neff products (KGF-D, KGF-N, KGM-D, KGM-N, ZG, FH/FK are available and compatible with FSI metric ball screws

FSI, TSI & RSI Miniature Ball Screws
- Custom coatings available (thin dense chrome)

Standard and custom machining

Precision end journal machining to standard or customer specified requirements using CNC lathe and grinding.

State-of-the-art dynamic lead error verification to P5 accuracy.
Ball Screw Engineering

Acceptable Speed vs. Length for Screws

<table>
<thead>
<tr>
<th>END SUPPORT TYPE</th>
<th>ROTATIONAL SPEED (RPM)</th>
<th>MAX. L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68 10 12 14, 16 20 25</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>50 40 32</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50 40 32</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>50 40 32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>END SUPPORT TYPE</th>
<th>MAX. L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68 10 12 14, 16 20 25</td>
</tr>
<tr>
<td>B</td>
<td>50 40 32</td>
</tr>
<tr>
<td>C</td>
<td>50 40 32</td>
</tr>
<tr>
<td>D</td>
<td>50 40 32</td>
</tr>
</tbody>
</table>
Ball Screw Engineering

Compression Load vs. Length for Designated Ball Screws

END SUPPORT TYPE

<table>
<thead>
<tr>
<th>Type</th>
<th>One end fixed, other end free</th>
<th>Both ends supported</th>
<th>One end fixed, other end supported</th>
<th>Both ends fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>END LOAD</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>END LOAD</td>
<td>MAX. L</td>
<td>MAX. L</td>
<td>MAX. L</td>
<td>MAX. L</td>
</tr>
<tr>
<td>INCHES</td>
<td>Inches mm</td>
<td>Inches mm</td>
<td>Inches mm</td>
<td>Inches mm</td>
</tr>
<tr>
<td>5</td>
<td>127</td>
<td>10</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>254</td>
<td>20</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>381</td>
<td>30</td>
<td>42</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>508</td>
<td>40</td>
<td>57</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>635</td>
<td>50</td>
<td>71</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>762</td>
<td>60</td>
<td>85</td>
<td>120</td>
</tr>
<tr>
<td>35</td>
<td>889</td>
<td>70</td>
<td>99</td>
<td>140</td>
</tr>
<tr>
<td>40</td>
<td>1016</td>
<td>80</td>
<td>113</td>
<td>160</td>
</tr>
<tr>
<td>45</td>
<td>1143</td>
<td>90</td>
<td>117</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>1270</td>
<td>100</td>
<td>127</td>
<td>198</td>
</tr>
<tr>
<td>55</td>
<td>1397</td>
<td>110</td>
<td>141</td>
<td>212</td>
</tr>
<tr>
<td>60</td>
<td>1524</td>
<td>120</td>
<td>156</td>
<td>226</td>
</tr>
<tr>
<td>65</td>
<td>1778</td>
<td>130</td>
<td>170</td>
<td>240</td>
</tr>
<tr>
<td>70</td>
<td>2032</td>
<td>140</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2286</td>
<td>150</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2540</td>
<td>160</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>2870</td>
<td>170</td>
<td>226</td>
<td></td>
</tr>
</tbody>
</table>

LOAD MAX. L

<table>
<thead>
<tr>
<th>END LOAD</th>
<th>In mm</th>
<th>10,000</th>
<th>5,000</th>
<th>3,000</th>
<th>2,000</th>
<th>1,000</th>
<th>635</th>
<th>500</th>
<th>300</th>
<th>200</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>127</td>
<td>44,500</td>
<td>22,250</td>
<td>13,350</td>
<td>8,900</td>
<td>4,450</td>
<td>1,000</td>
<td>635</td>
<td>500</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>B</td>
<td>254</td>
<td>10,000</td>
<td>5,000</td>
<td>3,000</td>
<td>2,000</td>
<td>1,000</td>
<td>635</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>356</td>
<td>1,000</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>635</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>508</td>
<td>1,000</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>635</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

N Lb.

- 1,335,000
- 300,000
- 890,000
- 225,000
- 133,500
- 90,000
- 45,500
- 22,250
- 13,350
- 8,900
- 4,450
- 1,000
- 635
- 500
- 300
- 200
- 100
Screw Accuracy – Permissible Travel Variation

Type P – Positioning Ball Screws

Type T – Transport Ball Screws

Table 3

<table>
<thead>
<tr>
<th>l_u [mm]</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 315</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>315 ≤ l_u ≤ 500</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>500 ≤ l_u ≤ 1000</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>1000 ≤ l_u ≤ 1250</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Tolerance Class</th>
<th>P3</th>
<th>P5</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{300p} [µm]</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
</tr>
<tr>
<td>v_{2π} [µm]</td>
<td>Table 1</td>
<td>Table 1</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>-0.01/1000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e_p</td>
<td>Table 3</td>
<td>Table 3</td>
<td>-</td>
</tr>
<tr>
<td>v_{up}</td>
<td>Table 3</td>
<td>Table 3</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Nominal lead Ph [mm]</th>
<th>≤ 2.5</th>
<th>≤ 5</th>
<th>≤ 10</th>
<th>≤ 20</th>
<th>> 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead error le [mm]</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>e_p [µm]</th>
<th>v up [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Glossary and Formulas

Accuracy
A measurement of precision. Perfect accuracy, for example, means advancing a ball nut 25 mm from any point on a screw will always require the exact same number of revolutions.

Axial Lash / Backlash
The axial-free motion between the ball nut and ball screw; a measure of system stiffness and repeatability.

Column Load / Compression Load
Load that would tend to compress or buckle the ball screw shaft.

Dynamic Load Rating
Maximum load that a ball bearing screw assembly can maintain for 1 million revolutions (Metric Series).

Lead
The axial distance a screw travels during one revolution.

Lead Error
The amount of positional error per 300 mm (Metric Series) that is inherent in linear motion on ball screws.

Load/Life Rating
The usable life of a ball bearing screw assembly measured in revolutions under a specific load. The revolutions that 90% of a group of ball bearing screws will complete, or exceed, before the first evidence of fatigue develops.

Repeatability
A measure of constancy that is directly related to axial backlash. Higher backlash equates to lower repeatability and may be corrected by preloading the ball nut if required.

Static Load
Static load is the maximum non-operating load capacity above which brinelling of the ball track occurs.

Formulas

<table>
<thead>
<tr>
<th>Equivalent Load</th>
<th>$F_{eq}[N] = \left(\sum_{i=1}^{n} f_i^3 \times \frac{n}{n_i} \times \frac{q_i}{100} \right)^{1/3}$</th>
<th>Power</th>
<th>$P_e[W] = \frac{F_{eq} \times P \times n}{5.398 \times 10^5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent Speed</td>
<td>$n_{eq}[rpm] = \sum_{i=1}^{n} n_i \times \frac{q_i}{100}$</td>
<td>Critical Screw Speed</td>
<td>$n_{LS}[rpm] = S \times C_{S1} \times 1.2 \times 10^8 \times \frac{d_r}{L^2}$</td>
</tr>
<tr>
<td>Life</td>
<td>$L_{10}[Rot] = \left(\frac{C_{SW}}{F_{eq}} \right) \times 10^k$</td>
<td>Critical Nut Speed</td>
<td>$DN = d_r n < 140,000$</td>
</tr>
<tr>
<td>Torque</td>
<td>$T[Nm] = 1.77 \times 10^4 \times F_{eq} \times P$</td>
<td>Permissible Compression Load</td>
<td>$F_s[N] = S \times C_{S1} \times 9.687 \times 10^4 \times \frac{d_r^4}{L^2}$</td>
</tr>
</tbody>
</table>

$q = \text{Duration [%]}$
$C_{SW} = \text{Dynamic Load [N]}$
$P = \text{Lead [mm]}$
$C_S = \text{End Fixity Factor (see table on the right)}$
$S = \text{Safety Factor (0.8 recommended)}$
$d_r = \text{Nominal Diameter [mm]}$
$d_l = \text{Root Diameter [mm]}$
$L = \text{Max. Unsupported Length [mm]}$
$n = \text{Rotational Speed of Screw [RPM]}$

<table>
<thead>
<tr>
<th>End Support</th>
<th>C_{S1}</th>
<th>C_{S2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.36</td>
<td>0.25</td>
</tr>
<tr>
<td>B</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>C</td>
<td>1.47</td>
<td>2.00</td>
</tr>
<tr>
<td>D</td>
<td>2.23</td>
<td>4.00</td>
</tr>
</tbody>
</table>

www.thomsonlinear.com
USA, CANADA and MEXICO
Thomson Customer Support
203A West Rock Road
Radford, VA 24141, USA
Phone: 1-540-633-3549
Fax: 1-540-633-0294
E-mail: thomson@thomsonlinear.com
Literature: literature.thomsonlinear.com

Thomson Marengo, IL USA
ISO 9001 certified, 88,000 sq. ft. facility
manufacturing Linear Actuators, Ball Screws, Linear Bearings & Shafting,
and Step Motors. Founded in 1967, currently with 220 employees.