Thread drunkenness is defined as the erratic pitch error occurring within intervals of one pitch.

Thomson has published a new technical whitepaper to help design engineers manage this issue properly and achieve the required accuracy in new machine design.

Guided by ISO, DIN & JIS industrial standards, many design engineers broadly define lead accuracy of ball screws only in terms of error accumulated over 300 mm (V300) but often overlook the value of measuring or controlling lead accuracy per revolution (V2π). Often referred to as ball screw drunkenness because of the hard-to-predict wobble it introduces into ball screw operation, lead accuracy per revolution is emerging as a critical parameter in miniature screw applications where the overall travel length is less than 300 mm.

Read more about how to prevent ball screw drunkenness in miniature applications:

Join us on Monday, March 13, 2017


Join our live webinar for an in-depth look at smart electromechanical actuation based on the Electrak HD linear actuator from Thomson. Discover:

- How to prevent an actuator from failing at the wrong time which can damage equipment or
To learn more and get your questions answered:

Register for free >

Why Go Electric?

Replacing hydraulic and pneumatic cylinders with electrical linear actuators means a simpler and smaller installation, easier control, lower energy costs, higher accuracy, less maintenance, less noise and a cleaner, healthier environment.

The updated Thomson brochure "Linear Actuators for On/Off-Highway Vehicles" will help you design equipment that is better, faster and smarter.

Applications detailed in this piece include:

- Throttle control for reduced noise and emissions
- Actuators for quick-attach applications that improve productivity and safety
- Actuators for hood lifts that provide easy and safe access
- Many more

View our brochure with detailed application graphics >