Linear Motion. Optimized.

Equivalent Operating Load

Jeff G. Johnson, Product Engineer

Thomson Industries, Inc.
540-633-3549
www.thomsonlinear.com
Thomson@thomsonlinear.com

The formula for determining the equivalent operating load $\left(F_{e q}\right)$ is important. Many engineers will just use the nominal operating load (F) when calculating the life of a ball screw but in extreme cases this may neglect some significant loads and forces such as those due to impact, shock, extreme acceleration / deceleration, externally applied loads, etc.

In the example used in the article, I assumed a simple trapezoidal motion profile (See Figure 1) whereas the system was accelerating or decelerating approximately 9% of the time and was at constant velocity for 91% of the time.

Figure 1 - Trapezoidal Motion Profile
Figure 2 is an excerpt from the engineering section of the Thomson catalog and can be found in most ball screw texts. The equivalent force equation is given as:

$$
F_{e q}=\left(\sum_{i=1}^{n} F_{i}^{3} \times \frac{n_{i}}{n_{e q}} \times \frac{q_{i}}{100}\right)^{1 / 3}
$$

Where:
$F_{\text {eq }}=$ Equivalent Load
$\mathrm{n}_{\text {eq }}=$ Equivalent Speed
q = percentage of time
Since this is a constant velocity application, we will ignore the equivalent speed term and simplify the equivalent load equation as follows:

$$
F_{e q}=\left(\sum_{i=1}^{n} F_{i}^{3} \times \frac{q_{i}}{100}\right)^{1 / 3}
$$

Solving this equation gives us the final answer of approximately 304 N .

Simple rotational speed profile

Simple loading profile (1)

Simple loading profile (2)

$$
n_{s e}\left[\min ^{-1}\right]=\sum_{i=1}^{n} n_{i} \times \frac{q_{i}}{100}
$$

$$
F_{54}[N]=\left(\sum_{i=1}^{n} F_{i}^{2} \times \frac{n_{i}}{n_{54}} \times \frac{q_{1}}{100}\right)^{12}
$$

$$
F_{s 0}[N]=\left(\sum_{i=1}^{n} F_{m i}{ }^{1} \times \frac{n_{i}}{n_{m 0}} \times \frac{q_{i}}{100}\right)^{1 p}
$$

Modified Life

$$
\begin{aligned}
L_{10}[\text { revolutions }] & =\left[\frac{C_{20}}{F_{e 0}}\right]^{3} \times 10^{8} \\
L_{\text {kit }}[\text { hours }] & =\frac{L_{10}}{n_{50} \times 60}
\end{aligned}
$$

Parameters:

Figure 2 - Equivalent Force Equations

